Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zdeněk Trávníček, ${ }^{\text {a,b** Jaromír }}$ Marek ${ }^{c, a}$ and Lucie Szüčováb

${ }^{\text {a }}$ Department of Inorganic Chemistry, Faculty of Science, Palacký University, Křižkovského 10, CZ-771 47 Olomouc, Czech Republic,
${ }^{\text {b }}$ Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, AS CR, Palacký University, Šlechtitelu 11, CZ-783 71 Olomouc, Czech Republic, and ${ }^{\text {c }}$ Laboratory of Functional Genomics and Proteomics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic

Correspondence e-mail: trav@aix.upol.cz

Key indicators

Single-crystal X-ray study
$T=105 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.034$
$w R$ factor $=0.086$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
trans-Bis\{2-chloro-6-[(3-hydroxybenzyl)-amino]-9-isopropylpurine- κN^{7} \}platinum(II) dimethylformamide disolvate

The title complex, trans- $\left[\mathrm{Pt}^{\mathrm{II}} \mathrm{Cl}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{5} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, is centrosymmetric, with square-planar coordination of the Pt atom within a trans- $\mathrm{Cl}_{2} \mathrm{~N}_{2}$ donor set. The complex is connected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to two dimethylformamide solvent molecules. The complex is the first structural example of a $\mathrm{Pt}^{\mathrm{II}}$ complex involving two coordinated cyclin-dependent kinase inhibitors, viz. 2-chloro-6-[(3-hydroxybenzyl)amino]-9-isopropylpurine.

Comment

The development of anti-cancer $\mathrm{Pt}^{\mathrm{II}}$ or generally antineoplastic transition metal complexes originated in the 1960s after the discovery of the unexpected biological activity of cis$\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$ (Cisplatin) (Rosenberg et al., 1965). In our opinion, the antitumour action of metal-based complexes might be improved by the utilization of potentially active molecules, such as N-donor ligands. Thus, cyclin-dependent kinase (CDK) inhibitors derived from 6-benzylaminopurine might be successfully employed as such ligands, as we have recently demonstrated (e.g. Trávníček et al., 2003, 2005, 2006; Szüčová et al., 2006). To date, only one structure of a Pt complex with a 6-benzylaminopurine CDK inhibitor has been determined (Trávníček et al., 2003). In this paper, we report the structural characterization of the first platinum complex, (I), containing two CDK inhibitors, viz. two 2-chloro-6-[(3-hydroxybenzyl)amino]-9-isopropylpurine molecules (L), as ligands.

(I)

The structure of (I) (Fig. 1 and Table 1) comprises a centrosymmetric trans- $\left[\mathrm{PtCl}_{2} L_{2}\right]$ complex connected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to two dimethylformamide molecules. The $\mathrm{Pt}^{\mathrm{II}}$ atom, lying on a centre of symmetry, is coordinated by two Cl atoms and two L ligands through the N 7 atoms of the adenine units, forming a trans-square-planar coordination around the central atom. The $\mathrm{Pt}-\mathrm{N}$ and $\mathrm{Pt}-\mathrm{Cl}$ bond distances are comparable with the average bond lengths

Received 26 May 2006 Accepted 29 May 2006

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds and the intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Pt}$ interactions. [Symmetry code: (i) $1-x, 1-y, 1-z$.]

Figure 2
A view of the crystal packing of (I), showing $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions between neighbouring complexes. Dashed lines indicate intermolecular hydrogen bonds. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (iv) $1-x$, $1-y, 2-z$; (v) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2} ;($ vi $) \frac{5}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$.]
of 2.02 and $2.29 \AA$, respectively, found in related $\mathrm{PtCl}_{2} \mathrm{~N}_{2}$ complexes reported in the Cambridge Structural Database (Version 5.27.2; Allen, 2002).

The Pt and N6 atoms both deviate significantly from the planarity of the purine ring system, with out-of-plane deviations of 0.1996 (1) and 0.135 (4) \AA, respectively, and the almost planar six-membered (pyrimidine) and five-membered (imidazole) rings of purine form an angle of $3.5(1)^{\circ}$.

The relatively short intermolecular N6-H. . Pt distance of $2.76 \AA$, in comparison with distances in the range $2.88-2.90 \AA$ observed in trans-(dichloro)-bis(creatinine)platinum(II) (Matos Beja et al., 1991; Ramos Silva et al., 1996) and trans-bis(2-amino-1-methyl-1,5-dihydro-4H-imidazol-4-one- N^{\prime})(dichloro)platinum(II) (Lynch \& Duckhouse, 2001), indicates a moderate $\mathrm{N}-\mathrm{H} \cdots \mathrm{Pt}$ interaction operating in (I). The leastsquares planes of the hydroxybenzyl group and purine systems form a dihedral angle of $88.11(12)^{\circ}$.

The secondary structure of (I) is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving both hydroxybenzyl- and dimethylformamide-O atoms, and by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, as detailed in Table 2 and illustrated in Fig. 2.

Experimental

2-Chloro-6-[(3-hydroxybenzyl)amino]-9-isopropylpurine (L) was prepared by the method described in the literature (Kryštof et al., 2002). The title complex, (I), was synthesized as follows. The organic ligand $L(1.0 \mathrm{mmol})$ was dissolved in $\mathrm{EtOH}(20 \mathrm{ml})$ and then added to a mixture of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.5 \mathrm{mmol})$ in $\mathrm{EtOH}(15 \mathrm{ml})$. The reaction mixture was heated to 343 K and stirred for 72 h . The solution was then filtered and left to stand at room temperature for three weeks. The solid which formed was filtered off and single crystals of (I) suitable for X-ray analysis were obtained by recrystallization of the sample from a solution in dimethylformamide.

Crystal data

$\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{5} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=1047.74$
Monoclinic, $P 2_{{ }^{1}} / n$
$a=9.4136$ (4) £
$b=20.0628$ (10) \AA
$c=10.9064$ (5) A
$\beta=96.723(5)^{\circ}$
$V=2045.65(16) \AA^{3}$

Data collection

Oxford Xcalibur2 diffractometer ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.151, T_{\text {max }}=0.321$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.701 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=3.75 \mathrm{~mm}^{-1} \\
& T=105(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.5 \times 0.45 \times 0.3 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
H-atom parameters constrained
Refinement $\left.F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0275 P)^{2}+P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.28$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=1.00 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.74 \mathrm{e}^{-3}$
12305 measured reflections
3588 independent reflections
3395 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.0^{\circ}$

3588 reflections
264 parameters

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Pt} 1-\mathrm{N} 7$	$2.017(4)$	$\mathrm{Pt} 1-\mathrm{Cl} 2$	$2.3052(12)$
$\mathrm{N} 7-\mathrm{Pt} 1-\mathrm{Cl} 2$	$88.94(12)$	$\mathrm{N} 7-\mathrm{Pt} 1-\mathrm{Cl} 2^{\mathrm{i}}$	91.06 (12)
$\mathrm{C} 9-\mathrm{N} 6-\mathrm{C} 6-\mathrm{C} 5$	$-174.4(4)$	$\mathrm{C} 6-\mathrm{N} 6-\mathrm{C} 9-\mathrm{C} 10$	-89.7 (6)
$\mathrm{Cl} 2-\mathrm{Pt} 1-\mathrm{N} 7-\mathrm{C} 5$	$-59.3(4)$	$\mathrm{N} 6-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-179.5(4)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.84	1.84	$2.637(6)$	159
$\mathrm{C} 20-\mathrm{H} 20 C \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.98	2.74	$3.660(6)$	156
$\mathrm{C} 20-\mathrm{H} 20 A \cdots \mathrm{Cl} 2^{\text {iii }}$	0.98	2.83	$3.706(6)$	149
$\mathrm{C} 18-\mathrm{H} 18 A \cdots \mathrm{Cl} 1^{\text {iv }}$	0.98	2.90	$3.755(6)$	146

Symmetry codes: (ii) $\quad-x+\frac{5}{2}, y-\frac{1}{2},-z+\frac{3}{2} ; \quad$ (iii) $\quad x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$;
$-x+1,-y+1,-z+2$.
H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA, \mathrm{~N}-\mathrm{H}=0.88 \AA$ and $\mathrm{O}-\mathrm{H}=0.84 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N}, \mathrm{O})$. The highest unassigned difference Fourier peak of $1.00 \mathrm{e}^{-3}$ is located $1.04 \AA$ from the Pt atom.

metal-organic papers

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Johnson \& Burnett, 1996); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

The financial support of this work by the Grant Agency of the Czech Republic (grant No. 203/04/1168) and The Ministry of Education, Youth and Sports of the Czech Republic (grant Nos. MSM6198959218 and MSM0021622415) is gratefully acknowledged.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Johnson, C. K. \& Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Kryštof, V., Lenobel, R., Havlíček, L., Kuzma, M. \& Strnad, M. (2002). Bioorg. Med. Chem. Lett. 12, 3283-3286.
Lynch, D. E. \& Duckhouse, H. L. (2001). Acta Cryst. C57, 1036-1038.
Matos Beja, A., Carvalho Paixão, J. A., Martin Gil, J. \& Aragon Salgado, M. (1991). Acta Cryst. C47, 2333-2336.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Versions 1.69. Oxford Diffraction Ltd., Abingdon, Oxford, England.
Ramos Silva, M., Paixão, J. A., Matos Beja, A., Alte da Veiga, L., Martín-Gil, J. \& Martín-Gil, F. J. (1996). Acta Cryst. C52, 2450-2452.
Rosenberg, B., Camp, L. V. \& Krigas, T. (1965). Nature, 205, 698-699.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Szüčová, L., Trávníceek, Z., Zatloukal, M. \& Popa, I. (2006). Bioorg. Med. Chem. 14, 479-491.
Trávníček, Z., Klanicová, A., Popa, I. \& Rolčík, J. (2005). J. Inorg. Biochem. 99, 776-786.
Trávníček, Z., Kryštof, V. \& Šipl, M. (2006). J. Inorg. Biochem. 100, 214-225.
Trávníček, Z., Maloň, M., Zatloukal, M., Doležal, K., Strnad, M. \& Marek, J. (2003). J. Inorg. Biochem. 94, 307-316.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

